SIPARX

Enterprise Architect Global Summit 2022

Traceability is a key
to a valuable model

Takeshi Kouno

Sparx Systems Japan

tkouno@sparxsystems.jp

SIPARX

JAPAN

Agenda

Introduction

FAQs in Japan about modeling tools
Why we need modeling tools?
Traceability benefits and tips

Al S

A Problem in Traceability and its solution

* My session is announced as 60 minutes duration, but it will be
approximately 40 minutes.

* | have uploaded this slide to the Teams channel.

Who am |

Takeshi Kouno
e CEO and Founder of Sparx Systems Japan (2003-)

 Number of Enterprise Architect users in Japan:
* 71in 2003
* 70,000+ in 2022

* My first Enterprise Architect was version 3.0

SIPARX

JAPAN

Frequently Asked Question

4 ™ -
What are the differences s it enough to use a (free)
between diagramming diagramming tool or an Office tooq
tools and modeling tools? like PowerPoint to describe a |
Y. UML/SysML/BPMN/Archimate...
model?

o

If you use Enterprise Architect to draw pictures, the answer of the
second question might be Yes.

We should use Enterprise Architect as a modeling tool, that means we
should receive the full benefits of Enterprise Architect.

But what and how?

SIPARX

Main Benefits of Enterprise Architect

e Supporting lots of notations

* Generation source files and documents

e Simulation

* Project management

* Sharing model easily by ProCloud/WebEA/Prolaborate

However, the most basic use is to visualize the specification and design
of the target system or software by using some notations.

Elements in Diagrams are Related

Elements on diagrams are related each other:

req [package] HSUV Requirements [Requirement Derivation]

FuelEconomy

CargoCapacity

«requirement> A
Braking

/
\ i
| cderivereqr 1\
«derivdReqt» !
\ ! wreqirements
| / \
I
«requirement> \ L
i

«problem»
| Power needed for acceleration, off-
road performance and cargo
capacity conflicts with fuel
economy

refinedBy
HSUVOperationalStates

«requirement»
PowerSourceManagement

«rationale»

Power delivery shall happen by coordinated
control of gas and electric motors. See "Hybrid
Design Guidance"

564 [package] HSUV Structure [Automotive Domain Breakdow)

biock
romotive Domain

vehicet

0 pockage] Y Strcrs Pover Sbeysiom Breskaown]

WheaiioAssemsly

<blces

[ibd block] PowerSubsystem [CAN Bus Description] /

]

rDemand: : Real

w
rDemand)}

FuelPressure: Real

friver

Registered Owner.

Maintainer

D
o

«Continuous»
accelPosition,

PushAccelerator

MeasureVehicle
Conditons 1

«Continuous»
vehCond

Maintain the
vehicle

<continuous»
drivePower:
Horsepwr

) transtocecma

.

engageBrake

t: Transmission

ice: InternalCombustionEngine

fp: FS_TRSM

fp: FS_ICE

CAN_Bus

eepc: ~IFS_EPC etrsm: ~IFS_TRSM

peu: PowerControlUnit

Imbcetontrgine

Accelerate

Nominal states only

Braking

«requirement»
Acceleration

«testCase»
Max Acceleration

PowerSubsystem

JAPAN

Simple Example

Requirement - Logical Block - Physical Block

«requirement»
Requirement

«block»
Logical Block

«block»
- _«allocate» _ _ Physical Block (Actual
Device, Software, etc.)

realizes

The Logical Block)

(satisfies) the
_ Requirement)

The Physical Block realizes
functions of the Logical Block

SIPARX

JAPAN

SrPARX

15 JAPAN

More Elements and Diagrams, More Complex

It is difficult to find unnecessary or isolated elements, inconsistent
relationships among elements for large model - too complex!

How to manage Complexity among many diagrams and elements?

om

olex Exam

nle - Hierarchical Model

Requirement

Analysis / Design

V&V

Reason] ———=>Re uiremelED Value / 1
i > Effect
§ Resource x
= .
a Rationale | _ _ _ = Demand —J Confirm Value
@ \ and Effect satis
Business
| Model
Structure Other E
RequiremehJ > <-----—===== gystems
Constraint I~ Missing /
€ - 69 t\\ T~ Duplication
2 (&b Screen |= M | > Sy ~
& I e
State
Function Risk
Use Case »k)
€ Requiremelu:l P Structure Missing /
[0} = . .
@ e 69 ASENE Allocate Duplication
> ~ <
P T~<
5 Behaviour
)
Requiremell;l:| > Class Missing /
e Duplication
= ~~ _Have
S RN
Q =<
E N
o

Source Code

SIPARX

SYSTEMS JAPAN

SIPARX

JAPAN

Key to Manage Complexity: Traceability

Traceability is information how to relate model elements.

From Wikipedia:

In systems and software development, the term traceability refers to the ability to
link product requirements back to stakeholders' rationales and forward to
corresponding design artifacts, code, and test cases. Traceability supports numerous
software engineering activities such as change impact analysis, compliance
verification or traceback of code, regression test selection, and requirements

validation.

10

Merits of Traceability

* We can confirm:

* All requirements are realized by some elements
* There is no isolated elements i.e. unnecessary elements

* We can know:

 Why elements are necessary (by tracing to a source requirement)

* Change impact before change source codes

SIPARX

JAPAN

! Change! |

)

D%g_]

Traceability is necessary for describing Specificationnd D'es:ign!

11

Traceability is an Important Key

Diagrams made by drawing tools is just pictures and have no
information about relationships to other pictures.

Specification and Design contain various kind of relationships (i.e.
Traceability), but we cannot describe the relationships by a bunch of
pictures.

That is why we use modeling tools for describing specifications and
designs, and managing Traceability in them.

(I know, there are other reasons to use modeling tools, but today | will talk about Traceability.)

SIPARX

JAPAN

SIPARX

JAPAN

Sorts of Traceability in Enterprise Architect

1. Connector

* In UML, usually Trace or Abstraction types are used
 Some notations have special types for Traceability (e.g. SysML)

2. Classifier/Type
* Class - Object/Part/Port/Partition/...
e Attribute - Type, Operation - Return Type, Parameter - Type
* Trigger - Signal
* Action - Signal

3. Placementin a diagram
4. Hierarchy in the Browser
5. Tagged Value - RefGUID type

SIPARX

JAPAN

Facilities for Traceability in Enterprise
Architect

Relationship Matrix

* Design Ribbon -> Package/Matrix

Diagram Matrix View

* Diagram context menu -> Switch View -> Switch to Relation Matrix View

Traceability Window

* Design Ribbon -> Trace

Find in all Diagrams (Element Usage)

* Element context menu -> (Find ->) Find in all Diagrams

Sparx Japan offers the Traceability Suite Add-in. In some demo, | use the Add-in.

https://www.sparxsystems.jp/en/trace/

14

https://www.sparxsystems.jp/en/trace/

SIPARX

JAPAN

Why There are Many Facilities

Because purposes are different:

* Matrix:

* to confirm all elements are related, but direct relationships only
* to find missing and/or isolated elements

* Traceability Window, Traceability Map*:
 to check hierarchical relationships (multi-level relationships)

e Usage in Diagrams, ElementUsageEx*:
* to help understanding change impact

We need to use all facilities for Traceability management.

*: The TraceSuite Add-in features

SIPARX

JAPAN

Tips about Traceability

Defining and maintaining Traceability information costs a lot, so

* At first, consider objective why you need Traceability - then only
related elements are target to define Traceability

* Do not define Traceability for all elements

* If a model is temporary, Traceability is not necessary.

* Multi-layer models (e.g. System - Subsystem - Component) and/or long-term
development are the best for Traceability

* We can receive benefits from Traceability more than cost paying for Traceability

* Do not define complex Traceability
* It costs a lot to keep latest/correct

SIPARX

JAPAN

Problem in Traceability

We can see relationships in the model, and we can find missing and/or
isolated elements by Traceability but...

We cannot find inconsistency in the model by using (single-path)
Traceability. The model with perfect Traceability does not mean
consistent and validated.

The Physical Block is traced\
from a Requirement
correctly (i.e. not isolated),
Exam p|€2 but are these relationships
are correct? Y,

. «block» «block»
«requirement>» «satfy») _
Requirement = ———-pb————1 Logical Block L~ _<<_aﬂo_c'ape_3>>_ __1 Physical Block (Actual
o °

Device, Software, etc.)

SIPARX

JAPAN

Solution

2-paths Traceability can solve the problem

* We can confirm the correctness of model and Traceability information
automatically

Example Model of 2-Paths

In my MinimumMBSE document:

~,

Requirements

QE-I‘ -
Mission
Requirements — —

?EI System
Requirements

refine

-

_______ I E|I-E'I UseCases

Use Cases

(Child

(Scenario)

Element

d Logical Architecture

5
System
Context

Y T8 Block

Definition

(Classifier of Partitions)

~,

|

|

I)

I aggregation
|

|

Traceability via Requirements
a

Power Cutage
4 Countermeasure
s

({from Mission
Requirements)

(from System
Requirements)

=]
Automatic Line
Switching

(from System
Requirements)

B e o

(from Mission
Requirements)

Traceability via Use cases

™
R -' . B ln\"‘\ Control in a
pisog i heted L2 weather
rectanglepath,so focaihek b @ Demo UseCase
i l (from Mission (from Use Cases)
g Requirements)

&

Take measures
to prevent
power outages
in the grid

(from Use Cases)

SIzPARX

SYSTEMS JAPAN

b

(from Logical Architecture)

https://www.sparxsystems.jp/en/trace/minimumMBSE.htm

19

SIPARX

JAPAN

summary

* Traceability is one of the keys to distinguish modeling tools from
drawing tools

* \We need to use suitable facilities to know/investigate models

* Traceability sometimes makes model too complex and we must pay
cost to manage Traceability - try to find your best Traceability level

 Single-path Traceability cannot find inconsistency - consider if you can
make 2-paths Traceability

SIPARX

JAPAN

Thank You!

| hope this session could help your better Enterprise Architect life.

* | have uploaded this slide to the Sparx Systems Japan Teams channel.

* If you have any questions, comments and/or ideas, Please drop a post
in the Teams channel or email to tkouno@sparxsystems.jp.

